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The stability of shearing motion in a rotating fluid 

By J. A. JOHNSON 
Trinity College, Cambridge 

(Received 18 March 1963 and in revised form 20 June 1963) 

This paper is concerned with the stability of a parallel shear flow in an inviscid 
homogeneous unbounded rotating fluid, A sufficient condition for stability is 
obtained in terms of the dimensionless parameter N = (cos #)IS, where # is the 
angle between the wave-number k of the disturbance and the axis of rotation, 
and S is the Rossby number based on the thickness of the shear layer and the 
change in velocity across the layer. The condition is that infinitesimal disturbances 
are stable if either 

N 2 $(I- sin8) or N < -&(I+sinO), 

where B is the angle between k and the direction of streaming. For a shear layer 
profile of the type U = tanhz, the neutral curves are calculated for various 
Rossby numbers. These are compared to the stability of a shear layer in a 
stratified non-rotating fliid. The stability criterion for the large wave-numbers in 
a cylindrical shear layer is inferred from these results. 

1. Introduction 
Steady flows in rotating fluids are characterized by the appearance of shear 

layers parallel to the axis of rotation. Examples are the presence of forward 
wakes, and the experiments by Taylor (1921), in which thin sheets of dye were 
produced. The aim of this paper is to study the stability of these layers. Most 
earlier work on the stability of shear layers has been confined to non-rotating 
fluids, and in these problems Squire’s theorem assures us that a study of two- 
dimensional disturbances is sufficient to determine the stability characteristics. 
A summary of this work has been given by Chandrasekhar (1961, ch. XI). 

Although the similarity between the stability characteristics of stratified fluids 
and rotating fluids was discussed by Lord Rayleigh (1916)’ most of the theory is 
confined to explanations of the Taylor instability of fluid between rotating 
concentric cylinders, However, in a recent paper, Howard & Gupta (1962) have 
now made this comparison for axisymmetric disturbances for both axial and 
swirl flows. 

An attempt is now made to deal with the problem of a plane parallel flow in a 
homogeneous unbounded fluid, which has uniform rotation about a fixed axis. 
As the simplicity of Squire’s theorem is destroyed by the presence of the Coriolis 
term, a three-dimensional perturbation problem has to be solved. The analogy 
with stratified flow is shown to hold for the plane case, and a sufficient condition 
for stability is established for a general plane parallel flow. When this condition is 
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examined in detail for the continuously varying velocity profile, 0 = U, tanh (z"/b), 
the curves of neutral stability are calculated for various combinations of the 
Rossby number and the direction of rotation. It is found that the effect of the 
rotation is to stabilize the fluid, particularly to disturbances along the axis of 
rotation. 

Later, when the problem of a cylindrical shear layer is examined, it will be 
seen that the axial flow plays an important role in determining the stability 
characteristics. This is further evidence in support of the claim by Howard & 
Gupta that Chandrasekhar (1960) is incorrect in concluding that the swirl com- 
ponent alone determines the stability by Rayleigh's criterion, irrespective of the 
strength of the shear in the axial direction. 

2. A converse of the Taylor-Proudman theorem 
In  this paper, it is assumed that the fluid is incompressible, inviscid, and in 

uniform rotation with angular velocity !2 about an axis fixed in space. The 
rotating axes are chosen so that the initial velocity distribution (0, P, w) has 
only one non-zero component U(.Z), which is only a function of 2". 

The momentum equation, expressed in this rotating frame of reference, may 
be written as 

ati 

where 9' = p / p - * ( s 2 x x ) 2 + $ 5 .  

- + ( ( a . Q ) f i + 2 ! 2 x i i  af = - a  p', (2.1) 

In  these equations, a(%, t") represents the velocity field, 17 the fluid pressure, and 
q5 the potential of any applied conservative force field. The equation for the 
vorticity field &(a, t") may be found by taking the curl of (2.1), giving 

ao 
at" -+(ti.b)ij = (8+2!2).Vii. 

Let us first consider whether there is a steady shear layer in a rotating fluid if 
the component of rotation perpendicular to the layer, Qz, is non-zero. The 
velocity and vorticity fields are given by 

6 = (0(Z) ,  0, O), 5 = (0, dU/dx", 0). (2 .3 )  

On substituting these values in equation (2.2), we have 

dB 
ax" 2Qz- = 0. 

Clearly if dU/dz" is not zero, then 0, = 0; the axis of rotation is necessarily 
parallel to the plane of the shear layer. 

The Taylor-Proudman theorem states that all steady slow motions in a, 
rotating inviscid fluid are two-dimensional. Taylor (1921) showed experimentally 
that when a small quantity of dye is introduced to a slightly disturbed rotating 
fluid, it  spreads out into thin sheets parallel to the axis of rotation. Equation (2.4) 
shows that any steady shear flow must necessarily lie in planes parallel to the 
axis of rotation. 
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3. The perturbation equations 
In  parallel flow problems which do not involve uniform rotation, Squire (1933) 

has shown that the problem of the instability of three-dimensional disturbances 
is actually equivalent to a two-dimensional problem at a lower Reynolds number. 
However, when the fluid is rotating, it is not possible to use this theorem, as the 
vector product 2S2 x fi in (2.1) does not allow a linear combination of two of the 
disturbance variables to satisfy the same equation. Consequently, a three- 
dimensional perturbation problem must be constructed. 

There will be two basic scales, Uo and b, defined by the shape of the shear layer, 
where 2U0 is the total change in the velocity across the layer, and b is a measure 
of the thickness of the layer. Using these two scales, dimensionless variables 
may be introduced as 

u = ii/U,, x = 2 / b ,  o = b3/Uo,  t = Uot"/b, (3.1) 

and a dimensionless parameter, the Rossby number, S = U0/2bQ. 
Consider a small perturbation velocity field u' = (u, v, w) and vorticity field 

of = (<,r, (5) to the steady initial fields described by (2.3) and (3.1). The rotation 
vector a = Qn, where n is a unit vector lying in a plane parallel to the shear 
layer. When these variables are substituted in the vorticity equation (2.2), the 
linearized first-order perturbation equations are found to be 

and 

(3.2) 

(3.4) 

where the primes represent differentiation with respect to z. In order to specify 
the problem completely, we must add the continuity equation, and the relation- 
ships between the velocity and vorticity fields, 

and - 

au av aw 
ax ay az 

v.u = --+-+- = 0, (3.5) 

(3.7) 

where ii: is the unit vector in the z-direction. The variables u , v , t , r  may be 
removed by combining equations (3.2) and (3.3), and using the relations (3.6) and 
(3.7), giving 

aw (n.V) 
ax s (4 i- U g) Q2w- U"- +- l =  0, 

22-2 
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which with (3.4) defines w and 5. After eliminating 5, the perturbation equation 
for w is 

As the variables x, y and t appear only in partial derivatives, we may seek 
sinusoidal solutions of the form 

u(x,  y, 2, t )  = $(z) exp i k ( x  cos 8 i- y sin 8 - ct) ,  (3.9) 

z 

FIGURE 1. Notation. 

where 8 is the angle between the wave-number k and the direction of streaming. 
As a further simplification, the angle between the wave-number and the axis of 
rotation n will be called 4, as shown in figure 1. Substitute in equation (3.8) and 
we obtain 

+Urs ine  $ = 0. 

(3.10) 

The boundary conditions are chosen so that the perturbations are zero at large 
distances from the shear layer; that is 

$ . - 0  as z + r t c o .  (3.11) 

1 cos4 cos$ ( u  cos e- c)2 (pi- ~ $ 1 -  u n C O S  o(u cos e - c )  $+ __ __ s s  ( 
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It is already clear from (3.10) that there will be a preferred direction in the 
solution of this problem, and that this direction is the axis of rotation. For, when 
the wave-number is perpendicular to this axis, the last term of (3.10) is zero, and 
the equation reduces to the inviscid Orr-Sommerfeld equation. Consequently, 
in this direction, the conditions for stability will be the same as the non-rotating 
case. On further examination of (3.10), it  will be observed that the flow is really 
characterized by a new dimensionless parameter, N = (cos $>/X, which has 
negative values when k and n do not lie in the same quadrant. N is the ratio 
between the inertial forces and the components of the Coriolis forces in the 
direction of the wave-number. 

A suficient condition for stability 

A sufficient condition for stability may be derived using a standard method, but 
the result when 8 is non-zero is rather unusual. Substitute @ = f ( U  cos 0 - c)$ in 
(3.10), giving 

{( u cos 8 - c)  f ’}’ - 3 f U” cos 8-  k2f( u cos 8-  c )  

f Ul2 cos2 8 N ( N  + U‘ sin 0)f 
= 0. - ____ 

4( U cos r9-c) + (Ucos 8-  e) 

If this equation is multiplied by f *, the complex conjugate off, and in.tegrated 
over the range of all x ,  we have 

{$Uf2cos28-N(N+ U’sin8)) 2(Ucos8-c*)dz  = 0. 
+ 

(3.12) 

NOW if c = c, + ici, where ci > 0, there is instability, and the imaginary part of 
(3.12) is 

Clearly this is impossible if everywhere 

N ( N  + U’ sin 8)  - 4 UI2 cos2 8 2 0. (3.13) 

Consequently this is a sufficient condition for the stability of a plane parallel 
flow with velocity profile U(z) ,  and i t  may be factorized into 

{ N  + +U’( 1 +sin 8 ) } { N -  QU’(1- sin O ) }  2 0. (3.14) 

As no restriction has been placed on the velocity field U ( z )  yet, (3.14) will also 
apply to other types of parallel flow, as well as the shear layer. This criterion will 
be examined more closely in the following sections, which deal with simplifica- 
tions of (3.10). 
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4. A continuously varying velocity profile 
In  this section, the general problem is considerably simplified by working with 

a velocity profile that is continuously varying everywhere, and is defined by 
U = tanhz. In  this case, U‘ has a maximum value of unity, and its minimum 
value is zero, which allows (3.14) to be simplified. It can be shown that if every- 
where N lies in the range 

N > +(l-sin0), N < +( l+  sin0), (4.1) 

then all disturbances are stable. This result is illustrated in figure 2. It shows 
that there is always a band of width one unit of N ,  where instability is possible 
for at least one wave-number. This band always lies within the range IN1 < 1, 

k 

Stable for 
all values 

ofk 

t I 
I I 

- 1  -3-1 +sine) t(i-sine) 1 

N 
FrGmtE 2.  Diagrammatic representation of the sufficient condition for stability for 

the velocity profile U = tanh z. 

and its position is determined by 0, the direction of the wave-number vector. 
Moreover, for a given value of S, the thickness of the band depends on rjh, the angle 
between k and the axis of rotation. 

The solution for neutral waves 

For the velocity profile, U = tanhz, the eigenvalue problem defined by (3.10) 
and (3.1 1) may be solved, and the curves of neutral stability found, if we use the 
method developed by Drazin (1958) for the same velocity profile in a stratified 
non-rotating fluid. As (3.10) has space and time symmetry, we shall assume that 
c = 0 for a neutral wave, and then equation (3.10) reduces to 

U” N ( N +  U’ sin@) - k2@--  $i- @ = 0. 
U u2 cos2 e 

This is certainly true for a neutral wave when rotation is absent, as then the 
equation reduces to the Rayleigh equation, and we must have c = U where 
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U" = 0. For U = tanhz, we have U" = 0 when U = 0. Thus c = 0. The chief 
justification of this assumption lies in the fact that the resulting solution exists 
and matches the sufficient condition for stability obtained for arbitrary values 
of e,. If we now change the independent variable to U and make use of the fact 
that U = tanhz, we have 

and the boundary conditions become 

$ =  0 when U =  3.1. (4.4) 

This equation has singular points at U = 0, 5 1, and it may be verified that 

9 = (1- U")" 

is a regular solution near U = & 1, if 

v = &(k2-N2sec26')b. (4.5) 

(4.6) 

Similarly, $ = Up is a regular solution near U = 0, if 

p = + + sec8{(1 -sin 6' - 2N) (1 +sin 6' + 2N))&. 

We shall look for a solution of the form 

$ = UP( 1 - U")" x,  
where x is regular a t  the singular points of equation (4.3), and satisfies the 
following equation, derived from (4.3), using (4.5) and (4.6), 

2p 2 ( 3 ~ + 1 ) U  d x  ( 2 ~ + , ~ + 2 2 ) ( 2 ~ + p - l )  
= 0. - - i  dU2 U 1-U2 I-- dU ( 1 - 7 J 2 )  

d2X + - - 

Aparticular solution of this equation, which happens to be the solution we require, 
is given by 

As we have chosen the positive square roots in (4.5) and (4.6), in order to keep the 
solution regular at the singular points, 2 v + p + 2  cannot be zero, and therefore 

x = const., ( 2 v + p + 2 ) ( 2 v + p G 1 )  = 0. 

2 v + p - l =  0. 

After substituting from (4.5) and (4.6), and simplifying, this becomes the equation 
for the eigenvalues 

k2(k2 - 1) C O S ~  6' + 2k2N sin 6' cos2 6' + N 2  = 0. (4.7) 

The eigenfunctions for a neutral disturbance are given by 

$ = (const.) (sechz)2u [tanhx)@, 

where v and p are now 

Y = +k2 cos2 6' f +k sin 6'( 1 - k2 cos2 O)*, 

and p = (1-k2cos26')T ksin8(1-k2cos26')~. (4.9) 

(4.8) 

When 6' = 0,  equations (4.7), (4.8) and (4.9) reduce to the results obtained by 
Drazin using a similar analysis, except that N2 is replaced by the Richardson 
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number for stratified flow. The similarity between rotating flow and stratified 
flow has been discussed by Howard & Gupta (1962) for the case of axisymmetric 
flow fields. The results shown above extend this similarity to plane parallel flows, 
but only for the case of wave-numbers parallel to the basic flow. I n  stratified 
fluids, these are the only disturbances considered, but as should already be clear, 
other directions are also just as important for rotating fluids. 

I I k  
I 1.5 

I 
I 
I 
I - -  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I/ 
I I I 0 
I I 1 1 

- 1.0 - 0.5 0 0.5 1 .o 
N 

FIGURE 3. Neutral stability curves for various values of 8. 

Equation (4.7) shows that there will be a different curve of neutral stability for 
each value of 8. A few of the members of this set of curves are shown in figure 3; 
there is a similar set for positive values of 8, which are the reflexions in the k-axis 
of those shown. These curves match exactly the sufficient conditions for stability 
as defined by figure 2, which are for arbitrary values of c,.. Using the preceding 
analysis, it is not possible to prove that these neutral curves separate the stable 
region of the ( N ,  k)-plane from the unstable region. However, it  may be shown 
that the full viscous equation for the perturbation reduces to the Orr-Sommerfeld 
equation for large X, and to equation (4.2) for large Reynolds number. From the 
asymptotic viscous theory of the Orr-Sommerfeld equation, it follows that the 
flow is stable for values ( N ,  k) on the k-axis if k > 1 , and unstable if k < 1. Hence 
the neutral curves (4.7) do form the boundary between stable and unstable 
regions in the non-rotating case ( N  = 0). Therefore it seems reasonable that they 
will still form the boundary in the rotating case, especially as they match the 
sufficient conditions for stability exactly. Although we can only prove that 
amplified disturbances exist when N = 0, i t  is unlikely that a small rotation will 
remove all the instabilities, and therefore it seems probable that other points 
inside the neutral loops represent unstable disturbances. 
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Interpretation of the stability curves 
By inspection of the curves in figure 3, it may be seen that when k is perpendi- 
cular to the axis of rotation, N is zero for all values of S, and there is instability 
for all wave-numbers less than unity. Instability in other directions is not 
possible when the magnitude of N is greater than unity, and this requires 
2Q cos q5 > U,/b, a result that may be interpreted as follows. If the projection of 

\ 

Y 

FIGURE 4. Definition of angle p. There is stability if k lies in the range 
(0 - 4 - p, 0 - 4 +p,. 

the mean vorticity, 2Q, on to the wave-number vector is greater than the maxi- 
mum vorticity due to the shearing motion, there will be stability. This inequality 
leads to a sufficient condition that there will be stability in a well-defined pencil 
of directions of k for each (6, q5) pair. In  figure 4, the circle with centre at 0 has 
radius Uo/b, and the circle with centre E has radius Q, where OE is the vector 8. 
For prescribed values of 6 and q5, OG has magnitude 2Q cos q5. This will be larger 
than UJb if G lies on the arc ABC, and therefore all positions of k lying between 
OA and OC will be stable directions; that is for q5 < p. From the geometry of 
the figure 

and the range of stable directions is between 8 - q5 - p and 0 - q5 + p. As this is 
only a sufficient condition, it is possible that other directions will also be stable. 
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An important distinction between the stability characteristics of rotating and 
non-rotating fluids is already clear. In  a non-rotating fluid, the conditions for 
stability are the same in all directions, whereas in a rotating fluid, some directions 
may be stabilized, whilst other directions remain unstable. 

The neutral stability curves in the (k, @-plane 

Further interpretation of figure 3 is rather complicated by the fact that it  involves 
four variables, but if the direction of rotation is specified, $ may be expressed as 
a function of 8, and then i t  is possible to draw neutral stability curves in the 
(k, @-plane, for various values of the Rossby number. Figure 5 consists of five 
graphs which describe the neutral curves for five different positions of the axis 
of rotation. The interior of each loop is the unstable region. These graphs may 
also be used to describe the remaining three positions at  intervals ofn/4 radians. 
For 8 in the directions 8 = 3n/4, n, and 57r/4, the reflexion in the line 8 = 0 of the 
curves of figures 5 ( b ) ,  ( c )  and ( d )  give respectively the appropriate graphs. These 
graphs may be used to enlarge the pencil of stable directions defined in figure 4 
by the angle AOC. Thus, it becomes clear that, as S tends to zero, more directions 
become stabilized, until in the limit the only direction in which disturbances are 
unstable is perpendicular to the axis of rotation. As S approaches zero, the fluid 
motion becomes dominated by the rotation, whose chief effect is to stabilize the 
fluid, particularly to disturbances along its own axis. It seems appropriate to 
point out here that for a non-rotating fluid, the polar neutral stability curve is 
the circle k = 1, together with the line 8 = n/2; this line must be included as there 
is no component of the shearing motion in this direct,ion, and therefore the wave- 
speed c is zero for all wave-numbers. It will be seen that as S increases, the five 
neutral curves approach this limiting curve. I n  the next section, it is shown that 
the effects of viscous damping become important for large wave-numbers, and 
therefore the infinite parts of the curves in figure 5 may be cut off at  a finite value 
of k. 

On close inspection of figure 5, it appears that all the neutral loops lie within 
the boundaries defined by two straight lines, parallel to the y-axis, drawn through 
the points k = 1 on the x-axis. That these are the enveloping lines becomes clear 
after some rearrangement and differentiation of (4.7). Their equation is 

IC, = lccose = 1. 

Therefore there is always stability for wave-numbers whose component, in the 
direction of the basic streaming, is greater than unity. This would be both a 
necessary and sufficient condition for stability if viscosity had no effect on the 
behaviour of large wave-numbers. 

The considerable variation between figure 5 (a)  and 5 ( e )  is rather surprising as 
the only physical difference is the reversal of the direction of uniform rotation. 
However, the fundamental difference is that in case (a )  the rotation assists the 
shearing motion, whereas in case (e)  it opposes this motion. This effect is dealt 
with in detail in $ 6 ,  where it is explained in terms of Rayleigh’s criterion for 
axisymmetric flow. 
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( a )  

I - I 

Y 2.0 1.0 0 1.0 2.0 

( b )  

I - I 

Y 2.0 1.0 0 1.0 2.0 

(c) 

I - 
Y 2.0 1.0 0 1.0 2.0 

Y 2.0 1 .o 0 1.0 2.0 

FIUURE 5. Neutral stability curves in the ( k ,  @-plane for various values of S ,  and for fl2 in 
the direction of (a)O = go", ( b )  8 = 4 5 O ,  (c) 8 = o", (d )  8 = - 4 8 O ,  and (e) 0 = - 90". The values 
ofSarerepresentedby:..-,S = 32;---,S = 4;-.-.,s = 1;and-,S = +.Thenumerical 
scale represents the magnitude of k measured radially from the origin. 
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The role of the total vorticity 

For the particular velocity profile under consideration, the Rossby number is 
essentially a balance between the mean vorticity, 3an, and the vorticity, 
(Uo/b)i, due to the shearing motion across the plane of symmetry of the layer, 
where j is the unit vector along the y-axis. The total vorticity is Q = 2SZn + (U,/b) J*, 
and its direction is (n +A$). If we assume that the most stable direction, for 
fixed S,  is given by the direction of the total vorticity, rather than the mean 
vorticity, and then examine figure 5 ,  we find that this assumption fits in well with 
the results displayed. It is best illustrated by the curves in figures 5 ( b )  and (c). 
It explains why the first directions to become stable, for large S ,  are near the 
y-axis; and why the last directions to remain unstable for small S are near the 
direction that is perpendicular to n. 

It is possible that this assumption may be explained in terms of the stretching 
of vortex lines. The effect of the perturbation is to deform the straight vortex 
lines into helices with axes parallel to cj and wavelength (2rsec y ) / k ,  where y is 
the angle between k and <s. When k is parallel to Q, the helices are more com- 
pressed and hence the vortex lines are more stretched than for any other position 
of k. The vortex force (u x Q) acts as the restoring force, as at every point of the 
vortex line it is directed towards the axis of the helix. Its maximum value occurs 
when k is parallel to Q. Therefore larger disturbing forces are required to produce 
instability in the direction of Q, and consequently it is the most stable direction. 

5. The effect of viscosity on large wave-number disturbances 
If we include the viscous terms in the vorticity equation, we must include the 

term vv2Gi  in equation (2.2). After introducing the dimensionless Reynolds 
number, R = U,b/v, the effect of viscosity is obtained by replacing the factor 

in (3.8), thereby making the equation sixth order. After transforming to wave- 
number space, the viscous equation becomes 

cosq5 cosq5 
( U  cos 0- c)2(D2- k2) @- (D’U) cos 8 (U  cos 6-C) $ +- { _- + ( ~ ~ ) s i n @ ) @  

S 

(5.1) 
where D = d1d.z; for large R, this equation reduces t o  (3.10). 

We are only interested in finding when the viscous terms become as important 
as the terms in (3.10) for large wave-numbers. If we adopt the same method as in 
the inviscid analysis, and allow c to be zero for a neutral wave, the dominant 
terms in (5.1) for large wave-number are 

(5.2) 
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From the shape of the curves in figure 5 ,  we see that kcosd is 0(1) for large k, 
and therefore the first term of (5 .2 )  is O(1).  Thus the viscous terms will be im- 
portant if k - O(R4).  

For plane shearing motion, Esch (1957) showed that large wave-numbers are 
always stable for all values of the Reynolds number. Therefore, under these 
conditions, viscosity cannot possibly act as a destabilizer. So we may now round 
off all the parts of the neutral curves where k becomes large, as in these regions 
viscosity plays an important role, and any small disturbances will be damped. 

6. Applications to the theory of axisymmetric vortex sheets 
The velocity profile used in $4 is defined in dimensional variables as 

0 = U, tanh (z”/b). 

In  the limit as b tends to zero, this profile has the plane vortex sheet as its 
asymptotic form. Therefore a cylindrical layer of vorticity may be represented 
by a modification of this profile if the radius of the cylinder R, is large compared 
with the thickness b of the layer. If we can show that the equations for small 
perturbations of the cylindrical layer and the plane layer are identical when 
R, $= b, then the stability curves obtained in $ 4  may be used in this section. 

At first, we shall consider the more general axisymmetric problem, in which the 
x-axis is now chosen as the axis of rotation to conform with standard notation. 
The other Cylindrical polar co-ordinates are r and a. The basic velocity field is 
defined by an axial component W(r) ,  and a swirl component V(r). With the 
understanding that V now represents the gradient in cylindrical polars, the 
notation is the same as that used in 5 3. After substituting in the non-dimensional 
form of ( 2 . 2 ) ,  we have 

(6.3) 

However, the equations corresponding with (3.5) to (3.7) are slightly different, 
due to the effect of the non-Cartesian co-ordinate system, and they become 

au u 1 av at0 

ar r r aa a2 
v .u  =-+-+--+- = 0, 
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By a suitable combination of (6.2) and (6.3) in order that (6.5) and (6.6) may be 
usefully employed, a second equation for u and 5 is obtained, 

We shall look for sinusoidal solutions of the form 

(u, w) ( r ,  a, z ,  t) = ($, 5) ( r )  exp ik(ra sin $ + z cos $ - ct), (6.8) 

where $ is the angle between the wave-number and the axis of rotation. In order 
to preserve our previous notation, we shall define 8 as the angle between the 
wave-number and the direction of the resultant velocity u, where 0 = ( V 2  + W 2 ) i ,  
and then 

Vsin$+ Wcos$ = Dcoso,  

Vcos$-  Wsin$ = Dsino. 

After substituting these relations and (6.8) into equations (6.1) and (6.7), we 
may eliminate 5, and obtain the equation for the perturbation $: 

( B  cos 6 - c)2 D*2$ - 0’’ cos o ( D  cos o -  c )  $ + ( B  cos 8-  c )  $sin $ 

+-(- cos$ cos$ 
s s  

where 

For a cylindrical shear layer with large dimensionless radius R,/b, and unit 
thickness, if the displacement of the centre of the layer always lies within the 
range {(R,/b) - 1, (R,/b) + 1}, the radial position of the layer, r ,  is O(R,/b) and dr is 
O(1). Hence the first and fourth terms of D*2@ are dominant for R, 9 b, and 
(6.9) reduces to 

(6.10) 

This is identical with (3.10), and therefore the calculations relating to the plane 
shear layer may now be used for the cylindrical shear layer, provided R, $. b. 

In  general, only two special cases are interesting, namely when either the axial 
or the swirl component of the velocity field is zero. In the latter case, the flow 
pattern is similar to a wake, whereas by suitable choice of V(r), the former case 
may represent the motion between two rotating concentric cylinders. 

Rayleigh’s criterion for axisymmetric disturbances 

We choose the basic flow field, 

8,(7) = -~ -~ tanh{(7 -RO) /b} ,  m(T) = 0, (6.11) 

where 8, is in dimensional variables; this represents a cylindrical shear layer 
near 7 = R, between a region with zero velocity and a region with velocity 
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- 2V,. For axisymmetric disturbances, this configuration corresponds to the 
plane case when 8 = n-12, q5 = n-, and it is for these values that the sufficient 
condition for stability, represented in figure 2,  has an unusual position. This may 
be explained by an appeal to Rayleigh's criterion for the instability of revolving 
fluids. He stated that if the circulation increases monotonically outwards, there 
is stability. The velocity field produced by the uniform rotation is P,(+) = Q+, 
which opposes the shearing motion P,(i), and therefore the total velocity field is 

8* = P,- 8, 
= Q+ - V, - V, tanh {(+ - R,)/b). 

Hence 

and for stability this must be non-negative. That is 

This shows that for stability, X < 1,  and therefore as q5 = n, it  requires that 

However, if the direction of the shearing flow is reversed, it is now assisted by 
N <  -1 .  

the velocity field due to the rotation, and 

p* = QT + V, + V, tanh {(i - R,)/b). 

For axisymmetric disturbances, this is analogous to the plane case when 13 = n/2 ,  
q5 = 0. The gradient of the circulation, at  B = R,, is given by 

which is non-negative for all values of S ,  and therefore, as g5 = 0, there is stability 
if N >/ 0. These results are consistent with the stability condition (4.1) with 
8 = 7r/2 (see figure 2 ) .  

These two different cases are also represented in figure 5 ( e )  and ( a )  respec- 
tively, but it will be seen that if axial flow is also present, the conditions for 
stability are altered. In  particular, if 

P(?) = 0 ,  @(?) = W, + W, tanh {(R, - ?)/b},  (6.12) 

the range of stability for axisymmetric disturbances is given by figure 3 when 
8 = q5 = 0. It shows that instability only occurs for wave-numbers 0 < k < 1, 
when IN] = X- l  < 8, and that the most unstable wave-number is k = 2-4. For 
basic distributions of velocity between (6.11) and (6.12), the stability criteria 
gradually change from one extreme to the other. Clearly this supports the claim 
made by Howard & Gupta (1962), that Chandrasekhar (1960) is incorrect in 
concluding that the swirl component alone determines the stability by Rayleigh's 
criterion, irrespective of the strength of the shear in the axial direction. 
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Asymmetric disturbances 

Not very much may be inferred from the plane case for waves that are not 
axially symmetrical, as it is difficult to interpret the meaning of IC,. This wave- 
number is proportional to (b/R,) n, where n is the number of waves around the 
cylindrical layer. If n $. 0, in order to satisfy the condition that the layer should 
locally approximate to a plane, it  is essential that n 1. Pigure 5 (c) shows that 
for the shearing flow defined by (6.12), all disturbances with n =I= 0 are stable for 
all finite Rossby numbers, but only neutrally stable for infinite Rossby number. 
Figure 5(a )  shows that for the velocity field defined by (6.11) there is a finite 
number of values of nrepresenting unstable disturbances. This range of valuesfor 
n is defined by the condition that all values of ha in the range (0 , l )  represent 
unstable waves, and they are independent of the Rossby number. Thus the only 
effect of the rotation on the stability of asymmetric disturbances is for ‘wake’ 
flows, where stable modes replace any neutral modes that may exist in non- 
rotating fluids. 

It is a pleasure to record my thanks to Dr 0. M. Phillips for his continued 
interest and advice during the course of t.his investigation. 
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